СОДЕРЖАНИЕ

Гусейнов Ш. Л., Федоров С. Г., Косых В. А., Стороженко П. А. Катализаторы разложения пероксида водорода, используемые в ракетных двигателях (обзор)	459
Катализ	
Мамедова М. Т.	402
Окислительное дегидрирование этилбензола в стирол на отработанном алюмохромовом катализаторе	483
Чебаненко М. И., Захарова Н. В., Попков В. И. Получение нанопорошков графитоподобного нитрида углерода и их фотокаталитическая активность	
под действием видимого света	490
Особые технологические решения	
Красковский А. Н., Куликовская В. И., Гилевская К. С., Калацкая Ж. Н., Недведь Е. Л., Ламан Н. А., Агабеков В. Е. Нано- и субмикрометровые частицы пектината кальция в качестве носителей регуляторов роста растений	498
Донской И. Г. Численное моделирование и оптимизация режимов газификации древесной биомассы в потоке парокислородного дутья	506
Седов В. П., Борисенкова А. А., Суясова М. В., Орлова Д. Н., Иванов А. В., Фомин С. В., Криворотов А. С. Исследование продуктов глубокого экстрагирования фуллеренсодержащей сажи полярным растворителем .	515
Неорганический синтез и технология неорганических производств	
Еникеева М. О., Кенес К. М., Проскурина О. В., Данилович Д. П., Гусаров В. В.	
Влияние условий гидротермальной обработки на формирование наночастиц ортофосфата лантана со структурой монацита	529
Милютин В. В., Некрасова Н. А., Рудских В. В., Волкова Т. С.	32)
Получение высокочистого карбоната лития с использованием комплексообразующих ионитов	540
Высокомолекулярные соединения и материалы на их основе	
Матвеев Д. Н., Василевский В. П., Борисов И. Л., Волков В. В., Волков А. В. Влияние параметров сухо-мокрого формования на свойства половолоконных мембран из полисульфона	545
Невестенко М. А., Брюзгина Е. Б., Тужиков О. И., Брюзгин Е. В., Тарасова Ю. С.	
Изучение свойств пленочных материалов на основе целлюлозы и полиуретановых каучуков для осушения нефтей	556
Композиционные материалы	
Бочек А. М., Серов И. В., Шевчук И. Л., Лаврентьев В. К., Попова Е. Н., Власова Е. Н., Волчек Б. З., Юдин Е. В. Свойства растворов и композиционных пленок целлюлозы и хитина с наночастицами монтмориллонита, полученных из водно-щелочных растворов с добавками мочевины и тиомочевины	564

Сятковский А. И., Скуратова Т. Б., Трофимов Д. Н., Мазур А. С. Влияние параметров композитных материалов на основе поливинилацетата на их диссипативные свойства	575
Мосеенков С. И., Кузнецов В. Л., Заворин А. В., Голубцов Г. В., Коровин Е. Ю., Сусляев В. И., Ищенко А. В., Серкова А. Н., Сергеенко Д. И., Великанов Д. А. Электрофизические свойства композитов на основе полиэтилена, модифицированного многослойными углеродными нанотрубками с высоким содержанием Fe—Co-катализатора.	581
Сорбционные и ионообменные процессы	
Чуканов Н. В., Червонная Н. А., Кажева О. Н., Ермолаева В. Н., Варламов Д. А., Ван К. В. Ионообменные свойства гюнтерблассита и гмелинита — прототипов микропористых материалов для очистки вод	591
Иванова И. К., Каширцев В. А., Семенов М. Е., Глязнецова Ю. С., Чалая О. Н., Зуева И. Н., Портнягин А. С. Влияние состава растворителя на содержание кристаллической фазы и температуры плавления парафинов	600